domingo, 28 de mayo de 2017

Escrito en Venezuela Olimpiadas Matemáticas: El Arte de Resolver Problemas

Paul Halmos, en un bellísimo artículo titulado The Heart of Mathematics, se pregunta ¿en que consiste la matemática?, ¿en Axiomas? (como el postulado de las paralelas), ¿en teoremas? (como el Teorema Fundamental del Cálculo), ¿en definiciones? (como el concepto de límite), ¿en demostraciones? (como la del Teorema de Gödel de Incompletitud?. Halmos dice que la matemática no puede existir sin estos ingredientes pero lo esencial son los problemas y su solución. Piense, por ejemplo, en el problema de encontrar una fórmula para resolver, mediante radicales y operaciones algebraicas, la ecuación de quinto grado. Eso llevó a Galois a tener que realizar definiciones, teoremas, demostraciones...El álgebra moderna nace allí, el problema la genera. Es claro entonces que si debemos inculcar en nuestros alumnos hábitos, estrategias de aprendizaje y actitudes en un tema tan importante como la matemática los problemas debiesen ocupar un lugar central en nuestras clases. Y ¿acaso no lo hacen?. ¿No enviamos tareas, evaluamos con exámenes y quizes, mandamos secciones enteras de los libros con problemas? Ejercicios amigo lector, con ellos es que usualmente trabajamos y en eso se centra el trabajo con los alumnos, problemas no. Un problema es interesante, te atrapa y no te deja hasta que lo resuelves. Los problemas son bonitos y nos enseñan, nos retan. Los ejercicios son lo básico, la comprobación rutinaria que entendimos las reglas, son importantes y sin saber como hacerlos dificilmente podemos exigir más. Los ejercicios son como caminar y los problemas son como una carrera, que puede ser de 100 m o una marathon de 42 Km. 
Por esto, consideramos que el libro reseñado es un aporte muy valioso a la educación matemática en Venezuela. Tanto el profesor como los estudiantes de bachillerato encontraran diversión y técnicas en los problemas que se proponen. El profesor Nieto empieza su libro donde se debe comenzar, si se trata de resolver problemas ¿cómo lo hacemos de manera sistemática?. Eso es un enfoque importante, la inspiración y las ideas brillantes sin duda son necesarias pero muchas veces son fruto de un esfuerzo dirigido. El Prof. Nieto discute las ideas de Polya y las amplía de manera importante con las reflexiones de Schoenfeld. Siempre pense como dice Nieto que muchas veces es difícil para el joven que no tiene hábitos de pensamiento sistemáticos digerir a Polya. Luego, el profesor puede usar las ideas de Schoenfeld de manera provechosa para allanar el camino de sus estudiantes. Después nos encontramos con ejemplos! Excelente, las ideas heurísticas se ilustran con una serie de problemas sencillos, se trata que los estudiantes y el profesor reflexionen de una manera ordenada cuando se enfrentan con un problema. Kotov, en su libro de ajedrez Piense como un Gran Maestro, señala que incluso los mejores jugadores hacen una busqueda desordenada de la mejor jugada y que a veces después de reflexionar por media hora juegan, sin pensar, ¡la última jugada que se les ocurrio! Sin duda encontrar la mejor jugada o estrategia en el ajedrez es resolver un problema. 
Lo que sigue, en el libro del Prof. Nieto, es un montón de diversión en forma de problemas y muy importantes conocimientos matemáticos para resolverlos. Debo señalar que los principios y teoremas que se exponen son pocos pero fundamentales, vemos allí el principio de inducción o el del palomar o el Teorema Fundamental de la Aritmética por ejemplo. Es el uso adecuado de estos conocimientos lo que brinda armas formidables al alumno para resolver problemas. Las áreas de la matemática en la que se trabaja tienen sabor olímpico: aritmética, combinatoria, desigualdades, álgebra y geometría. El libro apoya de manera excelente a cualquier joven o profesor que quiera enfrentar las pruebas de selección para las olimpiadas matemáticas, el autor es un reconocido coach en estas actividades y ha hecho un gran trabajo en Venezuela en esta área. Pero, cualquier profesor se puede beneficiar de la lectura del libro para incluir diariamente en su trabajo de aula problemas. Igualmente, cualquier joven de bachillerato que le guste el reto académico encontrará en el libro la posibilidad de pensar y buscar caminos que lleven a la solución de mas de 150 problemas. Creo que cualquier profesor de bachillerato debiese tener una copia del libro en su biblioteca. Una última palabra, me he centrado en hablar de profesores y estudiantes de bachillerato  pero cualquier matemático encontrará problemas divertidos y duros en el libro,  lo se por experiencia propia. 

 El Profesor José Heber Nieto nació en 1949 en Uruguay y se graduó en la Universidad de Buenos Aires en Ciencias Matemáticas. Fundador de los estudios de Matemática y Computación en la universidad del Zulia, de la cual es Doctor Honoris Causa. Ha realizado un fructifero trabajo con los jovenes venezolanos y su preparación para la Olimpiada Matemática tanto internacional como las regionales y nacionales.

viernes, 5 de mayo de 2017

Pitágoras y Einstein




Para Pitágoras la matemática era lo que se podía conocer y está en el mundo que nos rodea, lo que lo hace también, posible sujeto de estudio. La música de las esferas se refería a que la música era matemática, así como la traslación de los objetos celestes. Todo era número, pero ¿qué clase de números?. Por supuesto estaban los naturales $$1, 2, 3, \cdots $$ y estaban las relaciones de proporción entre esos números, lo que ahora entendemos como el conjunto de los racionales, los números de la forma  $$ {\frac{p}{q}}$$ con p,q naturales y q no 0. Por supuesto, la notación que usamos es moderna y el lenguaje de los griegos era geométrico. En la música cuando usamos un instrumento de cuerda, los sonidos armónicos son ciertas proporciones entre la longitud de la cuerda y el corte que hacemos al pisar un traste. También ciertas combinaciones de lo anterior producen sonidos agradables al oído. La armonía es matemática. Sin embargo, un hecho muy sencillo derivado del Teorema de Pitágoras hizo reflexionar a los griegos sobre la necesidad de ampliar el concepto de proporcionalidad, lo cual fue hecho por  Eudoxo .
¿Qué fue lo que rompió la armonía pitágorica?. El descubrimiento que la longitud de la hipotenusa de un triángulo rectángulo isósceles no guardaba una proporción racional con el cateto, esto equivale a decir que la ecuación $$ {\sqrt{2}=\frac{p}{q}}$$ con p,q naturales es imposible. Hay muchas demostraciones de esta imposibilidad, al parecer la primera se le atribuye a Hipaso. La que vamos a dar es Tom M. Apostol, excelente matemático estadounidense cuyos libros de Cálculo son muy conocidos entre los estudiantes. La escogemos por su espíritu griego, la pudo dar Euclides pero es del año 2000.
Supongamos lo contrario, es decir podemos encontrar p,q tales que $$p²=2q²$$ entonces existe una pareja p,q que es la más pequeña y que verifica la relación.  Veamos el dibujo siguiente
donde la longitud del segmento AB es igual a la del BC y es q, la longitud del segmento AC es p. Es claro, si trazamos un segmento que una A con E, que las longitudes de los segmentos DE y EB son iguales. Pero la longitud de CD es igual a la de DE y es p-q que es entero, luego el triángulo CDE tiene catetos e hipotenusa con longitudes formadas por enteros. Dejamos al lector que verifique que estas longitudes son menores que p,q. Un absurdo ya que habíamos supuesto que nuestra escogencia de p,q era la menor posible. 
Luego, el teorema de Pitágoras obligó a los matemáticos a ampliar sus ideas numéricas, ampliación que desembocó en el concepto de número real. 
¿Qué tiene que ver Einstein con esta historia?
Ortega y Gasset le dijo una vez a Einstein durante una conferencia que  su teoría era una geometrización de la Física, que al final todo era matemática, por la cara que puso Einstein no le gustó el comentario del filosofo español. Podemos pensar que la mecánica cuántica con sus espectros discretos y energía en paquetes es una vuelta al número entero, a la proporción, es desde el punto de vista físico una revuelta contra muchas ideas pero también es, del punto de vista matemático, un ataque a las ideas de continuidad que surgen del cálculo de Newton y Leibniz. Un experimento mental muy sencillo revela la importancia del Teorema de Pitágoras en la teoría de la relatividad especial de Einstein. Imagine que usted va en un tren a una velocidad v y dispara un rayo de luz al techo del tren. El tiempo que le toma al rayo llegar al techo es $$ t=\frac{d}{c}$$ Donde c es la velocidad de la luz y d la distancia de su linterna al techo del tren. Ahora, para un observador situado en el andén del tren que observa su experimento, la situación es ligeramente diferente. El verá su rayo de luz, no perpendicularmente sobre el techo sino inclinado como indica el dibujo siguiente
En el dibujo, t' es el tiempo que mide el observador que está en reposo en el andén para que el rayo se tope con el techo. Es claro que $$t'>t$$
Es decir, el tiempo que mide un observador dentro del tren para que el rayo llegue al techo es menor que el tiempo que mide un observador que está en reposo respecto al andén . De hecho, el Teorema de Pitágoras da la relación exacta, invitamos al lector a encontrarla usando nuestro dibujo,  $$t'=\frac{t}{\sqrt{1-\frac{v²}{c²}}}$$
Esta situación se debe a una ley de la naturaleza que no deja de sorprendernos: la velocidad de la luz es un invariante en los sistemas inerciales. Es decir, que si me acerco a una fuente de luz a una cierta velocidad v y mido la velocidad de la luz esta es c, pero si ahora me alejo a la misma velocidad v de nuevo voy a medir c. El cuidadoso experimento de Michelson y Morley demostró este comportamiento de la luz, pero el mismo ya estaba en las ecuaciones del genio escoces Maxwell. Pitágoras y Einstein, son cercanos, los une el deseo del hombre por comprender.